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Executive Summary 
 (a) A simple macroscopic theory for stra in-induced phase tran sformations under high 

pressure is developed. 
(b) The corresponding finite element algorithms and subroutines are developed. 
(c) Problems on compression and shear of a sample in rotational diamond anvil cell are 

solved. The results change the fundamental understanding of interpretation of experimentally 
observed effects and measurements and the extracting of information on material behavior from 
sample behavior.  

(d) Nanoscale phase field theory for solid-solid  transformations for the most general case 
of large elastic and transformation strains, and different elastic properties of phases is developed.   

(e) The corresponding finite element algorithms and subroutines are developed. Model 
problems on martensitic microstructure evolution are solved. 

(f) Experimental approaches to study strain -induced phase transformations in potentially 
energetic materials are refined.  

(g) Experiments on NaN3, NaN3+N2 mixture, and AgN3 are performed under hydrostatic 
compression up to 77 GPa and under shear.Various phase transfor mations, including 
amorphization, are obtained in both materials under various compression-shear paths. 

(h) In add ition to p lan, experiments on KN 3 and CsN 3 are performed under hydrostatic  
compression up to 50 GPa. 

(i) In addition to plan, theory of surface-induced phase tran sformation is developed and 
checked for pre-melting and melting of Al.  

(j) In addition to plan, barrierless nucleation near nanovoids is studied. 

Introduction 
One of the main DoD missions in high energy density materials is to find new energetic 

materials with 10 times the TNT energy release and with enhanced stability, reduced sensitivity, 
and satisfying “green munitions” requirements. e.g., the recent ARL effort is to synthesize 
polymeric nitrogen (and N2/H2), which is expected to have 5 times the TNT energy release, using 
the diamond anvil cell. Polymeric N2 appears above 110 GPa pressure and above the temperature 
of 2000K but cannot be retained under ambient conditions. In these studies, phase 
transformations (PTs) are obtained in a diamond anvil cell under high quasi-hydrostatic pressure. 
While it is recognized that plastic shear can (a) reduce PT pressure by a factor of 2–10, (b) 
drastically accelerate the kinetics of PT, (c) lead to new phases, and (d) replace reversible PTs 
with irreversible ones for some materials, we are not aware of any study of PT under pressure 
and shear with the goal of finding highly energetic metastable phases.  

In this project we performed the first search for highly energetic high pressure metastable 
phases obtained under compression and plastic shear in a rotational diamond anvil cell (RDAC) 
in azides. We combined experimental, theoretical, and modeling efforts to gain fundamental 
information on shear-induced PTs in materials with potentially highly energetic phases and on 
the ways to retain them under ambient conditions.  
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Methods and Results 
Theoretical and Computational Studies 

We pursued two goals: 
1. Develop the first nanoscale theory and simulation technique based on phase field 

approach in order to better understand the main reasons and m echanisms for plastic strain-
induced nucleation and growth of the high-pressure phase. Hypothetically, nucleation may occur 
at dislocation pile ups, nanovoids, grain bound aries and other in terfaces. Our tasks included 
development of large strain form ulation, introduction of the interface tension and stresses, 
description of surface-induced phenom ena (as the first step toward desc ription of the grain -
boundary-induced nucleation), and simulation of multivariant martensitic phase transformation. 
Since experimental results on surface-induced transformations in solids are absent, we also 
developed theory for surface-induced melting and obtained good agreement with experiments. 
Also, to resolve main challenges of the theory of nucleation in elastoplastic materials, we started 
with the simplest phase transformations, namely, sublimation and melting.  

2. Develop the macroscale theory and fini te element method (FE M) approaches to 
describe behavior of a sample under compression and torsion in RDAC. This is important for 
extraction and interpretation of experim ental data and understanding of m acroscopic reasons for 
strain-induced promotion of PTs. 

The following results have been obtained: 
 (a) The simplest macroscopic theory for strain-induced phase transformations under high 

pressure is developed. It couples large plastic deformations of materials with strain-induced 
kinetic of phase transformations[3,6,7,21]. 

(b) The finite element algorithms and subroutines are developed for the above theory. 
The procedure is found for implementation of th ese algorithms in the finite elem ent code 
ABAQUS [3,5-7,21].  

(c) Problems on com pression and shear of a sample in rotational diamond anvil cell are 
solved. The results change the fundamental understanding of interpretation of experimentally 
observed effects and measurements and the extracting of information on material behavior from 
sample behavior. These effects include nontrivial, nonlinear interac tion between strongly 
heterogeneous stress and plastic strain tensor fiel ds and phase transformation kinetics, the effect 
of change of material strength during phase transform ation, the simultaneous occurrence of 
direct and reverse phase transform ations in different regions, strong strain localization, and 
pressure self-multiplication. Various experimentally observed effects are reproduced and 
interpreted. The obtained results also represent a tool for designing experiments for different 
purposes and for controlling phase transformations [3,5-7,21]. 

We found that in the regions with strong gradients of concentration of phases (at the 
plateaus) and (in case of weaker product phases) in the entire sample, a traditional simplified 
equilibrium equation leads to incorrect results, which caused major confusion in the field. 
Experimentally observed plateaus in the pressure-distribution have been reproduced in our 
calculation. For the case when the high-pressure phase is significantly stronger than the low-
pressure phase, the plateau indeed corresponds to the two-phase region between completely 
transformed and non-transformed material. Pressure at plateaus varies slightly between two 
characteristic pressures in kinetic equation for strain-induced transformations, which allows us to 
identify these two key material parameters through experiment. 

Pressure grows strongly during the torsion and phase tran sformation, despite the volume 
decrease due to transformation. This result is not in contradiction with the Le Shatelie principle 
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because the thermodynamics of heterog eneous, strain-induced phase transform ations differs 
significantly from classical therm odynamics, corresponding instead to the experimentally 
observed pressure self-multiplica tion effect. Al so, during torsion, the thickness of a sam ple is 
reduced, and the high-pressure phase radially flows to the low-pressure region, where strain-
induced reverse transformations start.  Thus, both direct and reverse phase transformations occur 
simultaneously in different regions. When the high-pressure phase is significantly weaker than 
the low-pressure phase, calculations reproduce an experimentally observed, highly irregular 
pressure field and plateau, and suggest when it is possible to extract  two characteristic pressures 
and when pressure at steps does not have any specific meaning for strain-induced 
transformations. It is surprising, but in this case torsion does not promote the phase 
transformations in comparison with compression. Obtained results open ways to extract 
information on m aterial properties and phase transformation kinetics by coupling simulations 
and experiment, as well as to control phase transformations by controlling the loading path. 

(d) Nanoscale phase field theory for solid-solid transformations for the most general case 
of large elastic and transformation strains, and different elastic properties of phases is developed 
[1,9].  This break-through in phase field theory will allow us to accurately study real high-pressure 
phase transformations at thenanoscale. The corresponding finite element algorithms and 
subroutines are developed. Model problems on martensitic microstructure evolution are solved 
and the qualitative difference between simplified small-strain theory and our la rge-strain theory 
are demonstrated. 

(e) Interface propagation in the fram ework of the developed phase field theory (but for 
small strains) is studied in de tail [2]. The long-standing problem of introducing an atherm al 
resistance to the interface propagation into the phase field theory of martensitic phase 
transformations is solved. This allowed us to correctly described multiphase stationary 
microstructures and stress hysteresis.   

(f) Problems on barrierless nucleation near s ingle and multiple spherical and ellipsoidal 
nanovoids are solved. Nanovoids represent a nontrivial defect , which may exist under high 
pressure and which do not change pressure around them, but produce high nonhydrostatic 
stresses [1].  

(g) Theory of barrierles s surface-induced phase transformations in solids is developed 
[8]. It takes into accou nt in a non-contrad ictory way variation in surface energy d uring phase 
transformation. It may serve as a potential mechanism of barrierless nucleation at grain 
boundary, when its energy reduces during phase transformation. To check validity of the theory, 
it is applied to descriptions of pre-melting and melting of Al nanoparticles [14]. Good 
correspondence with experiments is obtained for the thickness of molten layer versus 
temperature and for melting temperature versus particle size. 

(h) Phase field theory is advanced in a way that one can control the martensite-martensite 
interface energy independent of the austenite-martensite interphase energy [8,15]. Detailed study 
of the effect of martensite-martensite interface energy on the evolution of martensitic 
microstructure in a nanograin is performed [15]. 

(i) Strong, surprising, and multifaceted effects of the width of the external surface layer 
and internal stresses on surface-induced pre-transformation and PTs are revealed using our 
further developed phase-field approach [18]. Multiple morphological transitions in the surface 
layer are found. These results are relevant for study of grain-boundary-induced nucleation.  

(j) Various conceptual problems related to nucleation in elastoplastic materials are 
formulated and resolve on the simples PTs like sublimation and melting [19,20]. 
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(k) Importance of dynamic formulation for phase field approach to PT in solid is 
demonstrated [22]. 

 
Experimental Studies 

I. NaN3 
(a) Experimental study of NaN3 under hydrostatic compression [23]. 

NaN3 sample has been compressed in surrounding medium of neon, argon, nitrogen, and 
mixture of m ethanol and m ethanol. We found a num ber of phase tran sitions of N aN3. As is 
identified through synchrotron X-ray diffraction (F igure I-1), the phase transitions appeared at 
0.2-0.3 GPa and 16 – 18.3 GPa (Figure I-2). The phase  between ~0.3 to 18.3 GPa is identified to 
be the reported low temperature phase, that has a m onoclinic structure. At pressures higher than 
18.3 GPa, we start to see significant change of x-ray diffraction pattern. The peaks become much 
broader and the intensity significantly reduced (as observed in the experim ents).This is an 
indication of disordering of NaN 3, corresponding to a new phase (phase III). Further work needs 
to be don e to solv e the structure. However, the pha se boundaries of these phases have been 
determined as shown in Figure I-2. The bulk modulus of Phase II is determined to be 33.8 GPa. 

  

  
Figure I-1. X-ray diffraction spectra of NaN3 at pressures in different pressure medium. 

The numbers and word mark the pressure in GPa.  
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Figure I-2. The room temperature phase diagram of NaN3. Letters mark the material 

surrounding the sample as pressure transmitting media. 
 

(b) Shear effect on phase transition of NaN3 by X-ray [24]. 
Shear effect on phase transition of NaN 3 has been explored with a rotational diamond 

anvil cell (Figure I-3). A 2.2 GPa, a 40-degree rotation of an anvil led to pressure increased to  ~ 
4 GPa. At 9.9 GPa, a rotation of 20 degree resulte d in complete phase tr ansition to phase III. 
Thus, shear reduced transformation pressure for initiation of phase III from 16 to 9.9 GPa. 
Pressure increases during phase transition to 16.5 GPa. After the sample was quenched to room 
pressure with another 20 degree rotation, amorphous phase was obtained. 

 
Figure I-3. XRD patterns of NaN3 in RDAC. a: p = 0 GPa, φ = 0º; b: pressure increase (PI), p = 2.2 
GPa, φ = 0º; c: φ = 40º after conditions described by b at r = 0; d: same as c, r = 20 μm;  e: PI, p = 9.9 
GPa, φ = 0º, r = 0; f: same as e, r = 20 μm; g: φ = 20º after e, r = 0; h: same as g, r = 20 μm; i: same as 
g, r = 40 μm; j: φ = 40º after g, r = 0; k: quench to ambient pressure. Different phases are demonstrated 
by different colors.  
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(c) Raman spectrum measurements under pressure and shear of NaN3 [24]. 
We performed a Raman scattering measurement of NaN3 under pressure and shear (Figure I-4). 
We revealed that 

• The sample becomes amorphous with extensive shear stress initialized at 44.8 GPa; 
• The Lattice modes vanish rapidly along with rotation; 
• The N-N vibration mode vanishes with extensive rotation initialized at 44.8 GPa. 
• The amorphous phase can be quenched at least to 21.3 GPa (Figure I-5). 

 
 

 
Figure I-4. The Raman spectrum of NaN3 under pressure and shear. The numbers to the left axes 
marks the pressure in GPa, and those to the right axes are degrees of rotation. 
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Figure I-5. Raman spectrum of the amorphous phase on pressure quenching, which shows the 
recovery to the initial phase at 21.3 GPa. 

 
 
 
(d) Raman measurements of a mixture of NaN3 and N2 under pressure and shear. 
A mixture of NaN3 and N2 was examined by Raman spectroscopy up to 40.7 GPa in a RDAC. 
The lattice of NaN3 was altered by the effect of mixing N2 and applying shear, indicated by 
the new mode in the lattice m ode region and the split of one m ode into three at 31.7 GPa with 
10 accumulated anvil-rotation (Figure I-6(a)), which was absen t in the d ata obtained by 
compressing a pure NaN3 (Figure I-6 (b)). We believe that this is a structural phase transition in 
the NaN3+N2 system, which has not completed at this run of experiment.. Yet, the N-N bonds of 
both N3

- and N2 were not significantly affected by the moderate anvil-rotation (40), indicated 
by the preservation of their symm etric stretching modes to the end of the experiments (Figure I-
6(c) and Figure I-7). The sample got back to the ambient phase upon release of pressure. Further 
work needs to be done to look into the phase transition and related property changes. 
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II. AgN3 
(a) Axial X-ray diffraction measurements of AgN3 [11]. 
Axial X-ray diffraction measurements were performed to over 50 GPa with different pressure 
medium (Figures II-1 and II-2). It is found that AgN3 transforms from an orthorhombic to a 
tetrahedral structure at 0.2 GPa, which is stable up to over 50 GPa.  The high pressure phase is 
determined to have a I4/mcm space group.  The structure refinement has been performed and the 
result are show in table 1 and figure II-3. The structural change at high pressure reflects the 
relative 3 degree rotations of the N-azide anions (Fig. II-4). The compressibility of the high 
pressure phase as well as the room pressure phase is determined (Figs II-5 and II-6). While 
volume is continuous across the transition (see Fig. II-5), like for second-order transformations, 
the jump in all lattice parameters (Fig. II-6) indicates that this is a first-order phase 
transformation. 

 

 
Figure I-7. Raman shift of N2       
symmetric stretching modes. 
Numbers are pressures and 
accumulated anvil-rotation 
angles. Asterisks marked spikes 
are noises. 

 
Figure 1-6. Raman shift of modes from NaN3.(a) lattice mode 
region. (b) comparison of spectra between pure NaN3 and 
mixture of NaN3 and N2. (c) Stretching mode region. Numbers 
are pressures and accumulated anvil-rotation angles. Asterisks 
marked spikes are noises. 
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Figure II-1. X-ray diffraction pattern of AgN3 in different pressure media. Arrows point to the 
emergence of new diffraction peaks corresponding to the phase transformation. 

 
Fig. II-2. The phase transition is signified by the proximity of peaks (020) and (200), (022) and 
(202), (130) and (310) up to 2.7 GPa.  
 
Table II-1. Atomic fractional coordinates of HP-AgN3 at 13.8 GPa  
 
Atom  Wyck  x  y  z  
Ag  4a  0  0  0.25  
N1  4d  0  0.5  0  
N2  8h  0.16(2)  0.66(2)  0  
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Fig. II-3. Rietveld refinement pattern for HP-AgN3 at 13.8 GPa. 
 

 
Figure II-4. The I4/mcm structure of AgN3 reflects a 3 degree rotation of the N3-chain from the 
original structure. 
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Fig II-5. Phase transition is revealed by the continuous unit cell volume changes with pressure 
through the transition pressure (2.7 GPa). While volume is continuous across the transition (like 
for second-order transformation), jump in all lattice parameters (Fig. II-6) indicates that this is 
a first-order phase transformation. 
 

 
Fig. II-6. An anomalous behavior (expansion) at high pressure is observed in the ambient phase 
(orthorhombic) of AgN3. 
 
(b) the study of the shear effect on the high pressure phase of AgN3 [25]. 

In the study of the shear effect on the high pressure phase of AgN3, we performed axial 
X-ray diffraction study to 31 GPa.  We compared the diffraction patterns at certain pressures as a 
result of shear operation with the patterns under relatively same pressure under hydrostatic 
compression. We found that the shear causes larger d-spacings and broader peak width.  The 
physics behind it is under investigation.  
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With the technical development of the radial X-ray diffraction method (discussed in later 
section), we studied the sear effect on AgN3. With initial pressure of 14.3 GPa, after 10 degree of 
anvil rotation, the pressure increased to 23.0 GPa, the diffraction peaks from AgN3 disappeared. 
AgN3 may possibly become amorphous (Fig. II-7). Since we observed diffraction peaks at 
similar pressure and larger shear in our axial diffraction measurement, this observation indicated 
that the amorphization of AgN3 is path-dependent, e.g., i.e., it depends on the entire process of 
change of pressure and shear.  
 

 
 
   

 
Fig II-7. Radial X-ray diffraction of AgN3 under pressure and shear. Top integrated pattern, 
bottom, comparision of the diffraction image. a  —AgN3 orthorhombic phase, a*—AgN3 
tetragonal phase, b—Au, c—C-BN, d—Anvil.  
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(c) Raman measurement of AgN3 to 77 GPa with large shear [25]. 
We performed Raman measurement of AgN3 with large shear. We started to apply shear at 

60.8 GPa, after 2370 degree of shear, the pressure reached 76.4 GPa, where the mode at 
1350~1500 cm-1 and 2250~2750 cm-1 completed disappeared. This indicates that the sample has 
been turned to amorphous. Quenching the sample to room pressure, the typical Raman peaks 
does not reappear, which indicating that the amorphization of AgN3 is quenchable. Detail of 
the change is shown in Fig. II-8. 
 

 
 
Fig. II-8. Raman spectra of AgN3 under pressure and shear.

 
III. KN3 
Hydrostatic compression of KN3 up to 55 GPa was performed coupled with synchrotron XRD 
[12] and Raman spectroscopy techniques [4]. Selected XRD patterns and Raman spectra are 
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shown in Figure III-1 and Figure III-2, respectively. The XRD data revealed a phase transition at 
15.5 GPa, an anisotropic compression, and a very stiff nitrogen chain. The bulk modulus was 
received as 18.6 GPa. The Raman data revealed that the phase transition was related to a soft 
mode. It also suggests a reduction of symmetry and the loss of inversion center in the HP phase. 
The mode Grüneisen parameters were obtained as listed in Table III-1. 
 

 
 

Figrue III-1. The XRD pattern of KN3 under 
pressures. Inset displays the origination of a 
new peak which grows with pressure. 

 

 
 
 
 
Figrue III-2. The Raman spectra of KN3 
under pressures.  
 
 

Table III-1. Mode frequency, assignm ent, and m ode Grüneisen parameter of KN 3 in its  
tetragonal phase.  
 

Raman shift  
(cm-1) 

Assignment ϒ i 

99 T(Eg) -0.139(9) 
145 R(B1g) & R(Eg) 0.91(5) 
1255 2v2(A1g) 0.040(4) 
1267 2v2(B2g) 0.0229(9) 
1291 2v2’’(A1g) 0.038(2) 
1340 v1(B2g) 0.046(2) 
1350 v1(A1g) 0.050(2) 
 

IV. CsN3 
 The hydrostatic compression of CsN3 to 55 GPa (Fig IV-1) resulted in the discovery of 3 

new high pressure phases, which appear at 0.6 GPa, 4.4 GPa, and 15.4 GPa (Figure IV-2) [13]. 
The phase III is resolved to have  a monoclinic crystal structure. The structure work on phase IV 
and V is underway. 
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Figure IV-1. XRD of CsN3 at pressures. 

 

Figure IV-2. The phase diagram of CsN3. 
 

 
 

Conclusions 
Experimental approaches to study strain-induced phase transformations in potentially 

energetic materials are refined. Experiments on NaN3 NaN3+N2 mixture, and AgN3 are 
performed under hydrostatic compression up to 77 GPa and under shear. Various phase 
transformations, including amorphization, are obtained in both materials under various 
compression-shear paths. The first nanoscale theory and simulation technique based on phase 
field approach is developed and better understanding of the main reasons and mechanisms for 
plastic strain-induced nucleation and growth of the high-pressure phase is achieved. The 
macroscale theory and FEM approaches to describe behavior of a sample under compression and 
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torsion in RDAC are developed. The results change the fundamental understanding of 
interpretation of experimentally observed effects and measurements and the extracting of 
information on material behavior from sample behavior.  
 
The above experimental, theoretical, and computational results represent significant progress 
toward the strain-induced synthesis of metastable high-pressure phases, including highly 
energetic phases.
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